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Abstract

We propose a general architecture that combines the coefficient learning scheme
with a residual operator layer for learning mappings between continuous func-
tions in the 3D Euclidean space. Our proposed model is guaranteed to achieve
SE(3)-equivariance by design. From the graph spectrum view, our method can be
interpreted as convolution on graphons (dense graphs with infinitely many nodes),
which we term InfGCN. By leveraging both the continuous graphon structure and
the discrete graph structure of the input data, our model can effectively capture
the geometric information while preserving equivariance. Through extensive ex-
periments on large-scale electron density datasets, we observed that our model
significantly outperformed the current state-of-the-art architectures. Multiple abla-
tion studies were also carried out to demonstrate the effectiveness of the proposed
architecture.

1 Introduction

Continuous functions in the 3D Euclidean space are widely encountered in science and engineering
domains, and learning the mappings between these functions has potentially an amplitude of applica-
tions. For example, the Schrödinger equation for the wave-like behavior of the electron in a molecule,
the Helmholtz equation for the time-independent wave functions, and the Navier–Stokes equation
for the dynamics of fluids all output a continuous function spanning over R3 given the initial input.
The discrete structure like the coordinates of the atoms, sources, and sinks also provides crucial
information. Several works have demonstrated the rich geometric information of these data to boost
the performance of other machine learning models, e.g., incorporating electron density data to better
predict the physical properties of molecules [1, 22, 52].

It is common that these data themselves have inherently complicated 3D geometric structures. Work
on directly predicting these structures, however, remains few. The traditional ways of obtaining
such continuous data often rely on quantum chemical computation as the approximation method to
solve ODEs and PDEs. For example, the ground truth electron density is often obtained with ab
initio methods [48, 26] with accurate results but an N7 computational scaling, making it prohibitive
or inefficient for large molecules. Other methods like the Kohn-Sham density functional theory
(KS-DFT) [24] has an N3 computational scaling with a relatively large error. Therefore, building an
efficient and accurate machine learning-based electron density estimator will have a positive impact
on this realm.

Similar to the crucial concept of equivariance for discrete 3D scenarios, we can also define equivari-
ance for a function defined on R3 as the property that the output transforms in accordance with the
transformation on the input data. The equivariance property demonstrates the robustness of the model
in the sense that it is independent of the poses of the input structure, thus also serving as an implicit
way of data augmentation such that the model is trained on the whole trajectory of the input sample.
Equivariance on point clouds can be obtained with vector neuron-based models [6, 16, 45, 15] and
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tensor field networks [50, 10]. We notice the close relationship between the tensor field network
(TFN) and the equivariance of the continuous functions and also propose our equivariant architecture
based on the tensor product.

In this way, we define our task as equivariant neural operator learning. We roughly summarize
previous work on operator learning into the following four classes: 1) voxel-based regression (3D-
CNN) [47, 40, 4]; 2) coefficient learning with a pre-defined set of basis functions [2, 27, 49, 14]; 3)
coordinate-based interpolation neural networks [17, 18]; and 4) neural operator learning [28, 25, 29,
32]. The voxel-based 3D-CNN models are straightforward methods for discretizing the continuous
input and output but are also sensitive to the specific discretization [25]. The coefficient learning
models provide an alternative to discretization and are invariant to grid discretization. However, as
the dimension of the Hilbert space is infinite, this method will inevitably incur errors with a finite
set of basis functions. The coordinate-based networks take the raw coordinates as input and use a
learnable model to “interpolate” them to obtain the coordinate-specific output. They leverage the
discrete structure and provide a strong baseline, but a hard cut-off distance prevents long-distance
interaction. The neural operators (NOs) are the newly-emerged architecture specifically tailored for
operator learning with strong theoretical bases [28]. However, current NOs are mostly tested only
on 1D or 2D data and have difficulty scaling up to large 3D voxels. They also ignore the discrete
structure which provides crucial information in many scenarios.

To leverage the advantages of these methods while mitigating their drawbacks, we build our model
upon the coefficient learning framework with an additional equivariant residual operator layer that
finetunes the final prediction with the coordinate-specific information. A graphical overview of our
model architecture is shown in Fig.1. We also provide a theoretical interpretation of the proposed
neural operator learning scheme from the graph spectrum view. Similar to its discrete counterpart of
graph convolutional network, our proposed model can be viewed as applying the transformation to
the spectrum of the continuous feature function, thus can be interpreted as the spectral convolution
on a graphon, a dense graph with infinitely many and continuously indexable nodes. In this way,
we term our proposed model “InfGCN”. Our model is able to achieve state-of-the-art performance
across several large-scale electron density datasets. Ablation studies were also carried out to further
demonstrate the effectiveness of the architecture.

To summarize, our contributions are, 1) we proposed a novel architecture that combines coefficient
learning with the coordinate-based residual operator layer, with our model guaranteed to preserve
SE(3)-equivariance by design; 2) we provided a theoretical interpretation of our model from the graph
spectrum point of view as graphon convolution; and 3) we carried out extensive experiments and abla-
tion studies on large-scale electron density datasets to demonstrate the effectiveness of our proposed
model. Our code is publicly available at https://github.com/ccr-cheng/InfGCN-pytorch.

Figure 1: Overview of the model architecture. (a) The input molecule with node-wise spherical tensor
features. (b) The message passing scheme in InfGCN. ⊗ denotes the tensor product of two spherical
tensors f, φ(r) (Sec.3.3). (c) Coordinate-specific residual operator layer (Sec.3.4). (d) Spherical
harmonics. (e) The final prediction combining the expanded basis functions and the residue.

2 Preliminary

We use G = (V, E) to denote the (discrete) graph with the corresponding node coordinates {xi}|V|
i=1.

A continuous function over the region D is also provided as the target feature: ρ : D → R. We
also assume that there is an initial feature function fin : D → R either obtained from less accurate
methods, a random guess, or some learnable initialization. Formally, given fin ∈ L2(D), which is a
square-integrable input feature function over D, and the target feature function ρ ∈ L2(D), we want
to learn an operator in the Hilbert space T : L2(D) → L2(D) to approximate the target function.
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Different from common regression tasks over finite-dimensional vector spaces, the Hilbert space
L2(D) is infinite-dimensional.

2.1 Equivariance

Equivariance describes the behavior of the model when the input data are transformed. Formally,
for group G acting on X and group H acting on Y , for a function f : X → Y , if there exists a
homomorphism S : G → H such that f(g · x) = (Sg)f(x) holds for all g ∈ G,x ∈ X , then f is
equivariant. Specifically, if S : g 7→ e maps every group action to the identity action, we have the
definition of invariance: f(g · x) = f(x),∀g ∈ G,x ∈ X .

In this work, we will mainly focus on the 3D Euclidean space with the special Euclidean group
SE(3), the group of all rigid transformations. As translation equivariance can be trivially achieved
by using only the relative displacement vectors, we usually ignore it in our discussion and focus on
rotation (i.e., SO(3)) equivariance. We first define the rotation of a continuous function f ∈ L2(R3)
as (Rf)(x) := f(R−1x), where R is the rotation matrix associated with the rotation operator R.
Note that the inverse occurs because we are rotating the coordinate frame instead of the coordinates.
In this way, the equivariance condition of an operator T with respect to rotation can be formulated as

T (Rf) = R(T f),∀R (1)

For clarity, we will distinguish equivariance and invariance, and use equivariance for functions
satisfying Eq.(1).

3 Method

3.1 Intuition

Intuitively, we would like to follow the message passing paradigm [12] to aggregate information from
every other point x ∈ D. In our scenario, however, as the nodes indexed by the coordinate x ∈ D are
infinite and continuous, the aggregation of the messages must be expressed as an integral:

TW f(x) :=

∫
D
W (x,y)f(y)dy (2)

where W : D ×D → [0, 1] is a square-integrable kernel function that parameterizes the source node
features f(y). There are two major problems regarding the formulation in Eq.(2): 1) unlike the
discrete counterpart in which the number of nodes is finite, parameterization of the kernel W in the
continuous setting is hard; and 2) even W is well-defined, the integral is generally intractable. Some
NOs [29, 32] directly approximate the integral with Monte Carlo estimation over all grid points,
which makes it harder to scale to voxels. Instead, we follow a similar idea in the coefficient learning
methods [2, 27] to define a set of complete basis functions {ψk(x)}∞k=1 over L2(D). In this way,
the feature function can be expanded onto the basis as f(x) =

∑∞
k=1 fkψk(x) where fk are the

coefficients. We can then parameterize the message passing in Eq.(2) as the coefficient learning with
truncation to the N -th basis. We call such an expansion method unicentric as there is only one basis
set for expansion. In theory, as the size of the basis goes to infinite, the above expansion method can
approximate any function y ∈ L2(D) with a diminishing error. In practice, however, using a very
large number of bases is often impractical. The geometric information of the discrete graph is also
not leveraged.

3.2 Multicentric Approximation

To address the limitation mentioned in the previous subsection, we leverage the discrete graph
structure to build a multicentric expansion scheme. We use the node coordinates ru in the discrete
graph as the centers of basis sets: ρ̂(x) =

∑
u∈V

∑∞
i=1 fi,uψi(x − ru). We demonstrated in

Appendix B that with some regularity and locality assumptions, the message passing in Eq.(2) can be
parameterized as

fi,u =
∑

v∈Ñ (u)

∞∑
j=1

wijSij(ruv)fj,v (3)
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where Sij(r) =
∫
D ψi(x)ψj(x− r)dx models the interaction between the two displaced basis at

centers i, j. The outer summation is over Ñ (u) = N (u) ∪ {u}, the set of neighboring centers of u
including u, and wij are learnable parameters. Note that, once the basis functions are assigned, Sij

only depends on r, but it is generally hard to obtain the closed-form expressions. We can use neural
nets to approximate it and coalesce the weight parameter into the nets.

The integral Sij(r) is often referred to as the overlap integral in quantum chemistry. The basis
functions can be viewed as the atomic orbitals and, in this way, the integral can therefore be
interpreted as the overlap between two displaced atom-centered electron clouds. The evaluation of
the overlap integral is important in the self-consistent field method (Hartree–Fock method) [48].

3.3 Equivariant Message Passing

We will now consider the functions on the 3-dimensional Euclidean space, i.e., D = R3, as they
are widely encountered in practical applications and non-trivial to achieve equivariance. It is not
easy to find a set of equivariant basis that satisfies Eq.(1). Inspired by the atomic orbitals used in
quantum chemistry, we construct the basis function with a Gaussian-based radial function Rℓ

n(r) and
a spherical harmonics Y m

ℓ (r̂):

ψnℓm(r) = Rℓ
n(r)Y

m
ℓ (r̂) = cnℓ exp(−anr2)rℓY m

ℓ (r̂) (4)
where r = |r| is the vector length and r̂ = r/r is the direction vector on the unit sphere. cnℓ are
normalizing constants such that

∫
R3 |ψnℓm(r)|2dV = 1. The degree of the spherical harmonics

ℓ takes values of non-negative integers, and the order m takes integers values between −ℓ and ℓ
(inclusive). Therefore, there are 2ℓ+ 1 spherical harmonics of degree ℓ. In this way, the basis index
i, j are now triplets of (n, ℓ,m).

To further incorporate the directional information, we follow the Tensor Field Network [50] to achieve
equivariance based on the tensor product. Note that for any index pair (n1ℓ1m1, n2ℓ2m2), the overlap
integral S(r) can also be expanded onto the basis as S(r) =

∑
nℓm snℓmψnℓm(r) =:

∑
nℓm φnℓm(r)

1. For a fixed r and radial index n, the coefficient sequence φ = {φℓm : ℓ ≥ 0,−ℓ ≤ m ≤ ℓ} can be
viewed as a spherical tensor. Notice that the node feature f = {f ℓ : ℓ ≥ 0} can also be viewed as a
spherical tensor. In the following discussion, we will omit the radial function index n for clarity as it
is independent of rotation. TFN leverages the fact that the spherical harmonics span the basis for the
irreducible representations of SO(3) and the tensor product of them produces equivariant spherical
tensors. The message passing scheme in TFN is defined as:

f ℓu ←
∑

v∈Ñ (u)

∑
k≥0

W ℓk(xv − xu)f
k
v , W ℓk(r) =

k+ℓ∑
J=|k−ℓ|

φℓk
J (r)

J∑
m=−J

Y m
J (r̂)Qℓk

Jm (5)

where Qℓk
Jm is the Clebsch-Gordan matrix of shape (2ℓ + 2) × (2k + 1) and φℓk

J : R+ → R are
learnable radial nets that constitute part of the edge tensor features. A detailed deduction is provided
in Appendix A. Intuitively, as TFN can achieve equivariance for spherical tensors, the output spherical
tensor interpreted as the coefficients should also give an equivariant continuous function ρ̂(x). Indeed
we have
Theorem. Given an equivariant continuous input, the message passing defined Eq.(5) gives an
equivariant output when interpreted as coefficients of the basis functions.

A rigorous proof of rotation equivariance can be found in Appendix A. The translation equivariance
also trivially holds as we only use the relative displacement vector ruv = xv − xu. The equivariance
of this scheme relies on the equivariance of the input feature map fin. Note that the 0-degree features
that correspond to pure Gaussians are isotropic, so we can use these features as the initial input. In
practice, we use atom-specific embeddings to allow more flexibility in our model.

Also note that for v = u, the message passing can be simplified. As the spherical harmonics are
orthogonal, the overlap integral is non-zero only if m1 = m2. Therefore,

f ℓu = wℓf ℓu +
∑

v∈N (u)

∑
k≥0

W ℓk(xv − xu)f
k
v (6)

1If we use an infinite number of complete orthonormal basis, the expansion can be achieved without error.
However, if we use some none-complete or finite basis, this should be viewed as an approximation in the
subspace spanned by the basis.
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The first term is referred to as self-interaction in previous papers [50, 44], but can be naturally inferred
from our message passing scheme. For the nonlinearity, we follow [50] to use the vector norm of
each degree of vector features:

f0 = σ0(f
0), f ℓ = σℓ(∥f ℓ∥2)f ℓ (7)

where σk are the activation functions. The equivariance holds as the vector norm is invariant to
rotation. Also, to avoid over-parametrization and save computational resources, we only consider
the interactions within the same radial index: Ŝnℓm,n′ℓ′m′(r) := δnn′Smm′,ℓℓ′(r). Note that this
assumption generally does not hold even for orthogonal radial bases, but in practice, the model was
still able to achieve comparable and even better results (Sec.5.3).

3.4 Residual Operator Layer

The dimension of the function space is infinite, but in practice, we can only use the finite approxima-
tion. Therefore, the expressiveness of the model will be limited by the number of basis functions
used. Also, as the radial part of the basis in Eq.(4) is neither complete nor orthogonal, it can induce
loss for the simple coefficient estimation approach. To mitigate this problem, we apply an additional
layer to capture the residue at a given query point p at coordinate x. More specifically, the residual
operator layer aggregates the neighboring node features to produce an invariant scalar2 to finetune
the final estimation:

z(x) =
∑

v∈N (p)

∑
k≥0

W k
res(xv − x)fkv (8)

This scheme resembles the coordinate-based interpolation nets and was proved effective in our
ablation study (Sec.5.3). Therefore, the final output function is

ρ̂(x) =
∑
nℓm

fnℓmψnℓm(x) + z(x) (9)

The equivariance of the residual operator layer as well as in the finite approximation case is also
provided in Appendix A. The loss function can be naturally defined with respect to the norm in
L2(R3) as L = ∥ρ̂− ρ∥22 =

∫
R3 |ρ̂(x)− ρ(x)|2dx.

4 Graph Spectral View of InfGCN

Just as the Graph Convolutional Network (GCN) [21] can be interpreted as the spectral convolution of
the discrete graph, we also provide an interpretation of InfGCN as the transformation on the graphon
spectra, thus leading to a similar concept of graphon convolution. We will first introduce the (slightly
generalized) concept of graphon. Defined on region D, a graphon, also known as graph limit or graph
function, is a symmetric square-integrable function:

W : D ×D → [0, 1],

∫
D2

|W (x,y)|2dxdy <∞ (10)

Intuitively, the kernel W (x,y) can be viewed as the probability that an edge forms between the
continuously indexable nodes x,y ∈ D. Now, consider the operator TW defined in Eq.(2). As the
integral kernel W is symmetric and square-integrable, we can apply the spectral theorem to conclude
that the operator TW it induces is a self-adjoint operator whose spectrum consists of a countable
number of real-valued eigenvalues {λk}∞k=1 with λk → 0. Let {ϕk}∞k=1 be the eigenfunctions such
that TWϕk = λkϕk. Similarly to the graph convolution for discrete graphs, any transformation on
the eigenvalues F : {λk}∞k=1 7→ {µk}∞k=1 can be viewed as the graphon convolution back in the
spatial domain. We note that GCN uses the polynomial approach to filter the graph frequencies as
Hx =

∑K
k=0 wkL

kx where wk are the parameters. Define the power series of TW as:

T n
W f(x) = TWT n−1

W f(x) =

∫
D
W (x,y)T n−1

W f(y)dy, T 0
W = I (11)

where I is the identity mapping on D. A graphon filter can be then defined asHf =
∑∞

k=0 wkT k
W f .

We can also follow GCN to use the Chebyshev polynomials to approximate the graphon filterH:

Hf ≈ θ1f + θ2TW f (12)
2Note that for scalars, SO(3) equivariance is equivalent to invariance.
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Just as the message passing on discrete graphs can be viewed as graph convolution, we point out here
that any model that tries to approximate the continuous analog TW f as defined in Eq.(2) can also
be viewed as graphon convolution. This includes InfGCN, all NOs, and coefficient learning nets.
A more formal statement using the graph Fourier transform (GFT) and the discrete graph spectral
theory are provided in Appendix B for completeness.

Another related result was demonstrated by Tsubaki et al. [51] that the discrete graph convolution is
equivalent to the linear transformation on a poor basis function set, with the hidden representation
being the coefficient vectors and the weight matrix in GCN being the basis functions. As we have
shown above, the same argument can be easily adapted for graphon convolution that the message
passing in Eq.(6) can be also viewed as the linear combination of atomic orbitals (LCAO) [37] in
traditional quantum chemistry.

Furthermore, based on Eq.(3), we can now give a more intuitive interpretation of the radial network
in TFN: it captures the magnitude of the radial part of the overlap integral S(r) of the basis in Eq.(4).
From the point convolution aspect, the TFN structure can be also considered a special case of our
proposed InfGCN model. The discrete input features can be regarded as the summation of Dirac
measures over the node coordinates as fin(x) =

∑
u fuδ(x− xu).

5 Experiments

We carried out extensive experiments on large-scale electron density datasets to illustrate the state-of-
the-art performance of our proposed InfGCN model over the current baselines. Multiple ablation
studies were also carried out to demonstrate the effectiveness of the proposed architecture.

5.1 Datasets and Baselines

We evaluated our model on three electron density datasets. As computers cannot truly store continuous
data, all datasets provide the electron density in a volumetric form on a pre-defined grid. Atom types
and atom coordinates are also available as discrete features.

QM9. The QM9 dataset [41, 39] contains 133,885 species with up to nine heavy atoms (CONF). The
density data as well as the data split come from [17, 18], which gives 123835 training samples, 50
validation samples, and 10000 testing samples.

Cubic. This large-scale dataset contains electron densities on 17,418 cubic inorganic materials [53].
In our experiment setting, we first filtered out the noble gas (He, Ne, Ar, Kr, Xe) and kept only the
crystal structure whose primitive cell contains less than 64 atoms. This gave 16,421 remaining data
points. A data split of 14421, 1000, and 1000 for train/validation/test was pre-assigned.

MD. The dataset contains 6 small molecules (ethanol, benzene, phenol, resorcinol, ethane, malonalde-
hyde) with different geometries sampled from molecular dynamics (MD). The former 4 molecules
are from [1] with 1000 sampled geometries each. The latter two are from [2] with 2000 sampled
geometries each. The models were trained separately for each molecule.

To evaluate the models, we followed [17] to define the normalized mean absolute error (NMAE) as
our evaluation metrics:

NMAE =

∫
R3 |ρ̂(x)− ρ(x)|dx∫

R3 |ρ(x)|dx
(13)

To avoid randomness, different from the sampling evaluation scheme in [17], we did the evaluation on
the partitioned mini-batches of the full density grid. Also, to demonstrate the equivariance of InfGCN,
the density and atom coordinates were randomly rotated during inference for the QM9 dataset. The
rotated density was sampled with trilinear interpolation from the original grid. Equivariance is trivial
for crystal data, as there is a canonical way of assigning the primitive cell. Similarly, for the MD
dataset, the authors described canonical ways to align the molecules [1, 2], so we also did not rotate
them. More details regarding the datasets can be found in Appendix C.

We compared our proposed model with a wide range of different baselines including CNN [40, 4],
interpolation networks (DeepDFT [17], DeepDFT2 [18], EGNN [43], DimeNet [23], DimeNet++
[11]), and neural operators (GNO [28], FNO [29], LNO [32]). For InfGCN, we set the maximal
degree of spherical tensors to L = 7, with 16 radial basis and 3 convolution layers. For CNN and
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neural operators, an atom type-specific initial density function is constructed. A sampling scheme is
used for all models except for CNN. All models were trained on a single NVIDIA A100 GPU. More
specifications on the model architecture and the training procedure can be found in Appendix D.

5.2 Main Results

The NMAE of different models on various datasets are shown in Table 1. Models with the best
performance are highlighted in bold. Our model is able to achieve state-of-the-art performance for
almost all datasets. For QM9 and Cubic, the performance improvement is about 1% compared to the
second-best model on both rotated and unrotated data, which is significant considering the small loss.
We also noticed that CNN worked well on small molecules in MD and QM9, but quickly ran out of
memory for larger Cubic data samples with even a batch size of 1 (marked “OOM” in the table). This
is because CNN ran on the full grid with a maximal number of 3843 voxels.

Table 1: NMAE (%) on QM9, Cubic, and MD datasets.

Dataset/Model InfGCN CNN Interpolation Net Neural Operator

DeepDFT DeepDFT2 EGNN DimeNet DimeNet++ GNO FNO LNO

QM9 rotated 4.73 5.89 5.87 4.98 12.13 12.98 12.75 46.90 33.25 24.13
unrotated 0.93 2.01 2.95 1.03 11.92 11.97 11.69 40.86 28.83 26.14

Cubic 8.98 OOM 14.08 10.37 11.74 12.51 12.18 53.55 48.08 46.33

MD

ethanol 8.43 13.97 7.34 8.83 13.90 13.99 14.24 82.35 31.98 43.17
benzene 5.11 11.98 6.61 5.49 13.49 14.48 14.34 82.46 20.05 38.82
phenol 5.51 11.52 9.09 7.00 13.59 12.93 12.99 66.69 42.98 60.70
resorcinol 5.95 11.07 8.18 6.95 12.61 12.04 12.01 58.75 26.06 35.07
ethane 7.01 14.72 8.31 6.36 15.17 13.11 12.95 71.12 26.31 77.14
malonaldehyde 10.34 18.52 9.31 10.68 12.37 18.71 16.79 84.52 34.58 47.22

Figure 2: Visualization of the predicted density, the density error, and the NMAE. Up: Indole (file
ID 24492 from QM9). Down: Cr4CuNiSe8 (mp-1226405 from Cubic). The colors of the points
indicate different atom types, and the isosurfaces indicate different density values. The pink and
green isosurfaces in the error plots represent the negative and positive errors, respectively.

The visualizations of the predicted densities in Fig.2 can provide more insights into the models. On
QM9, the error of InfGCN had a regular spherical shape, indicating the smoothness property of the
coefficient-based methods. The errors for the interpolation nets and CNN had a more complicated
rugged spatial pattern. For Cubic, InfGCN was able to capture the periodicity information whereas
almost all other models failed. The neural operators showed a distinct spatial pattern on the partition
boundaries of the grid, as it was demonstrated to be sensitive to the partition. More visualizations
are provided in Appendix E on Cubic and QM9 with a wide range of representative molecules to
demonstrate the generalizability of InfGCN.

The plots of model sizes versus NMAE on the QM9 dataset are shown in Figure 3. It can be clearly
seen from the figure that InfGCN achieved better performance with relatively small model size. The
interpolation nets and CNN (in red) provide strong baselines. The neural operators (in orange), on
the other hand, fail to scale to 3D data as a sampling scheme is required.
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5.3 Ablation Study

Figure 3: Plot of model sizes vs NMAE for different models and ablation studies on the QM9 dataset.

To further demonstrate the effectiveness of InfGCN, we also carried out extensive ablation studies
on various aspects of the proposed architecture on the QM9 dataset. The results are summarized in
Table 2 and are also demonstrated in Figure 3 in blue and green.

Table 2: NMAE (%) and the parameter count of different model settings on the QM9 dataset.
Model InfGCN(s7) s6 s5 s4 s3 s2 s1 s0 no-res fc

QM-rot (%) 4.73 4.77 4.76 4.77 4.86 6.95 9.56 12.62 6.14 4.95
QM-unrot (%) 0.93 1.01 1.11 1.08 1.46 4.65 8.07 12.05 3.72 1.36

Parameters (M) 1.20 0.85 0.58 0.39 0.26 0.17 0.13 0.11 1.16 17.42

Number of spherical basis. For coefficient learning models, using more basis functions will naturally
lead to a more expressive power of the model. For discrete tasks, [50, 10] used only the degree-1
spherical tensor which corresponds to vectors. We ran experiments with the maximal degree of the
spherical tensor 0 ≤ L ≤ 7 (sL columns). Note that s0 corresponds to atom-centered Gaussian
mixtures. It can be shown in Figure 3 (in blue) that the error smoothly drops as the maximal degree
increases. Nonetheless, the performance gain is not significant with L ≥ 4. This is probably because
the residual operator layer can effectively finetune the finite approximation error and therefore
allows for the trade-off between performance and efficiency. In this way, our proposed InfGCN can
potentially scale up to larger datasets with an appropriate choice of the number of spherical basis.

Residue prediction. The residue prediction layer is one of the major contributions of our model
that tries to mitigate the finite approximation error. It can be shown (under no-res) that this design
significantly improves the performance by nearly 2% with negligible increases in the model size and
training time. These results justify the effectiveness of the residue prediction scheme.

Fully-connected tensor product. As mentioned in Sec.3.3, we used a channel-wise tensor product
instead a fully connected one that allows inter-channel interaction. We also tried the fully-connect
tensor product under fc. It turns out that the fully-connected model was 15 times larger than the
original model and took 2.5 times as long as the latter to train. The results, however, are even worse,
probably due to overfitting on the training set.

6 Related Work

6.1 Neural Operator Learning

We use the term neural operator in a wider sense for any model that outputs continuous data here.
For modeling 3D densities, statistical approaches are still widely used in quantum chemistry realms.
For example, [2] and [49] used kernel ridge regression to determine the coefficients for atomic
orbitals. [13] used a symmetry-adapted Gaussian process regression for coefficient estimation. These
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traditional methods are able to produce moderate to good results but are also less flexible and difficult
to scale. For machine learning-based methods, [47] utilized a voxel-based 3D convolutional net with
a U-Net architecture [40] to predict density at a voxel level. Other works leveraged a similar idea
of multicentric approximation. [27] and [3] all designed a tensor product-based equivariant GNN
to predict the density spectra. These works are more flexible and efficient, but coefficient learning
models inevitably have finite approximation errors.

Another stream of work on neural operator learning focused on directly transforming the discretized
input. Tasks of these models often involve solving PDE or ODE systems in 1D or 2D scenarios.
For example, [30] proposed the infinite-layer network to approximate the continuous output. Graph
Neural Operator [28] approximated the operator with randomly sampled subgraphs and the message
passing scheme. [29] and [9] tried to parameterize and learn the operator from the Fourier domain
and spectral domain, respectively. [38] proposed an analog to the U-Net structure to achieve memory
efficiency. These models are hard to scale to larger 3D data and are also sensitive to the partition of
the grid if a sampling scheme is required. They also do not leverage the discrete structure.

6.2 Interpolation Networks

The term interpolation network was coined in [25] for models that take raw query coordinates as
input. As graph neural networks have achieved tremendous success in discrete tasks, they are usually
the base models for interpolation nets. [55] and [49] constructed the molecule graph to perform
variant message passing schemes with the final query-specific prediction. [17] proposed the DeepDFT
model which also considered the graph between query coordinates and [18] further extended it to use
a locally equivariant GNN [45]. [20] proposed a similar model on crystalline compounds. Besides
these specialized models, we also point out that current equivariant models for discrete graphs can all
be adapted for continuous tasks in principle, just like DimeNet and DimeNet++ that we used as the
baselines. Models that use only the invariant features including distance, angles, and dihedral angles
can be trivially equivariant but lacking expressiveness [7, 44, 5, 23]. [16, 15] proposed the GVP
model in which features are partitioned into scalars and vectors with carefully designed interaction
to guarantee equivariance. Other works leveraged the canonical local frame [19] or tried to learn
such a local frame [33]. Another line of works, the tensor field network [50, 10], utilized the group
theoretical results of the irreducible representations of SO(3) and proposed a tensor product based
architecture. We follow the last method as we notice the close relationship between the spherical
tensor and the basis set. Though previous works with similar architecture exist [27, 3], we first give
rigorous proof of the equivariance of the continuous function.

6.3 Downstream Applications

Several previous works tried to leverage the geometric information of the continuous function. [22]
utilized the charge density and spin density as both the supervising signal and the additional input
for predicting molecular energies, which achieved a significant performance improvement compared
to traditional DFT-based methods. [51, 1] first projected the density onto the pre-defined basis set
and then applied different neural nets on the coefficients to make predictions on downstream tasks.
[46] used a 3D CNN to encode the electron density of the protein complex to predict the backbone
structure. These works have demonstrated the significance of continuous data.

7 Limitation and Conclusion

In this paper, we introduce a novel equivariant neural operator learning architecture with the core com-
ponent interpretable as the convolution on graphons. With extensive experiments, we demonstrated
the effectiveness and generalizability of our model. We also discuss the limitation and potential
improvement of the proposed InfGCN model in future work. As the choice of the radial basis is
arbitrary, there is no theory or criterion for a better radial basis, and therefore, it leaves space for
improvement. For example, we may use Slater-type orbitals (STO) instead of Gaussian-type orbitals.
We may further orthogonalize the basis, which leads to the series of solutions to the Schrödinger
equation for the hydrogen-like atom with more direct chemical indications. For structures with
periodic boundary conditions, Fourier bases may provide a better solution. A learnable radial basis
parameterized by a neural net is also a feasible option to provide more flexibility.
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Supplementary Material

A Proof of Rotation Equivariance

In this section, we will give a rigid proof of rotation equivariance of our proposed InfGCN model
with finite approximation. Just as mentioned in the main text, we will ignore the radial index n for
clarity. Recall that we want to generate equivariant density functions as shown in Figure 4.

Figure 4: An illustration of rotation equivariance of the electron density function of benzene on R3.

Proposition A.1. Rotation of a spherical harmonic of degree ℓ and order m (RY m
ℓ )(r) :=

Y m
ℓ (R−1r) transforms into a linear combination of spherical harmonics of the same degree:

(RY m
ℓ )(r) =

ℓ∑
m′=−ℓ

Dℓ
mm′(R)Y m′

ℓ (r) (14)

where Dℓ
mm′(R) is an element of the Wigner D-matrix.

The proof of this property of spherical harmonics can be found in books on quantum mechanics, for
example, Eq.4.1.4 in [8]. Therefore, for a square-integrable function defined on the unit sphere in R3,
we can also describe the rotation of the function with Wigner D-matrics:
Proposition A.2. Assume f ∈ L2(S2) and the rotation of f have the (infinite) expansions onto the
spherical harmonic basis as:

f(r) =
∑
ℓm

f ℓmY
m
ℓ (r)

Rf(r) =
∑
ℓm

gℓmY
m
ℓ (r)

(15)

Then, we have
gℓ = Dℓ

Rf ℓ (16)

where f ℓ is the coefficient vector of degree ℓ with m = 2ℓ+1 elements, and Dℓ
R is the corresponding

Wigner D-matrix of degree ℓ.

Proof. Notice that for each degree ℓ, the coefficients are transformed linearly according to Eq.(14),
which concludes the proof.

Define spherical tensor f = {f ℓ : ℓ ≥ 0}, we can further simplify the notation in Proposition A.2 as

Rf = DR(f) (17)

A pictorial illustration of the rotation of the spherical harmonics is provided in Figure 5. It can
be shown that the computational diagram commutes in a sense it is equivalent to applying Wigner
D-matrices on the coefficients and then projecting them back as a continuous function.

One crucial property of the spherical tensors is that the tensor product is equivariant to rotation
R ∈ SO(3):
Proposition A.3. The tensor product of two spherical tensors satisfies the following identity:

DR(a⊗ b) = DR(a)⊗DR(b) (18)
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Figure 5: An illustration of rotation equivariance of linear combination of spherical harmonics as
a continuous function on the unit sphere. For better visualization, the radial value used to plot the
spherical harmonics is the squared density |ρ|2. The calculation, however, is still done on the original
(real-valued) spherical harmonics.

The proof of this property can be found in the TFN paper [50] in Appendix C. Essentially, it is a
natural corollary as the property of irreducible representations. Combining Eq.(14) and (3), we can
then design an equivariant message as:

fu =
∑

v∈Ñ (u)

∑
ℓk

wℓk

∑
Jm

φ(ruv)⊗ fv (19)

where φm
J (r) = φJ(r)Y

m
J (r̂). Here, we use the same technique as TFN to restrict the radial functions

to be independent of the order m so that it is isotropic. wℓk are the learnable weights. The tensor
product gives a 4-dimensional tensor. The summation indices J,m correspond to the two dimensions
other than ℓ, k. One way to define such a tensor product for two spherical tensors comes from the
coupling of angular momentum in physics. The tensor product c = a⊗ b is defined as

CJm =

ℓ∑
m1=−ℓ

k∑
m2=−k

aℓm1
bkm2

⟨ℓm1km2|Jm⟩ (20)

where ⟨ℓm1km2|Jm⟩ are the Clebsch-Gordan coefficients, and are nonzero only when |ℓ − k| ≤
J ≤ ℓ+ k,−J ≤ m ≤ J . Substituting Eq.(20) into Eq.(19) and ignoring the zero terms, we will get
a summation of

f ℓu =
∑

v∈Ñ (u)

∑
k≥0

k+ℓ∑
J=|k−ℓ|

wℓkφJ(r)

J∑
m=−J

Y m
J (r̂)Qℓk

Jmfkv (21)

where Qℓk
Jm (m1m2) = ⟨ℓm1km2|Jm⟩. Coalescing the weight into the learnable radial function

φ̂ℓk
J = wℓkφJ(r), we have our final message passing scheme defined in Eq.(5). With Proposition

A.3, we immediately have the following corollary:
Theorem A.4. The message passing defined in Eq.(19) (with infinitely many basis functions) is
equivariant to rotation.

Proof. According to Proposition A.2, the two spherical tensors in Eq.(19) transform as in Eq.(17).
Therefore, we have

T (Rfu) =
∑

v∈Ñ (u)

∑
ℓk

wℓk

∑
Jm

Rφ(ruv)⊗Rfv

=
∑

v∈Ñ (u)

∑
ℓk

wℓk

∑
Jm

DRφ(ruv)⊗DRfv

=
∑

v∈Ñ (u)

∑
ℓk

wℓk

∑
Jm

DR(φ(ruv)⊗ fv)

= DR

 ∑
v∈Ñ (u)

∑
ℓk

wℓk

∑
Jm

φ(ruv)⊗ fv


= R(T fu)

(22)

16



wℓk can be moved inside DR because it is essentially a linear combination of equivariant functions,
thus it is also equivariant.

Now let’s consider finite approximation where 0 ≤ ℓ ≤ L for a fixed L. We have the following
proposition:
Proposition A.5. Let PL : a = {aℓ : ℓ ≥ 0} 7→ PLa = {aℓ : 0 ≤ ℓ ≤ L} be the projection tensor
operator that projects the spherical tensor onto the bases with degree less or equal to L, then PL is
rotation equivariant:

PL(Ra) = R(PLa) (23)

Proof. It suffices to note that for each degree ℓ, the corresponding component aℓ rotates according to
Eq.(17), which only depends on the components with the same degree. Therefore, PL is equivariant
as the components with degree ℓ ≤ L are preserved on both sides.

Proposition A.6. The composition of two equivariant operators T1 ◦ T2 is also equivariant.

Proof.
(T1 ◦ T2)(Ra) = T1(T2(Ra)) = T1(R(T2a)) = R(T1T2a) (24)

Combining Theorem A.4 and Proposition A.5, A.6, we have the equivariant property with finite
approximation:
Corollary A.7. The result in Theorem A.4 also holds for a finite degree of spherical basis 0 ≤ ℓ ≤ L.

Notice that for degree 0 features (scalars), equivariance is equivalent to invariance, and it can be
obtained with projection operator P0, we have
Corollary A.8. The residual operator layer defined in Eq.(8) with finite approximation is invariant
with respect to the grid frame, thus equivariant to rotation under the global frame.

Combining the results above, we immediately obtain the rotation equivariance of our proposed model.
Theorem A.9. The proposed model in Eq.(9) with finite approximation and the residual operator
satisfies the equivariance condition defined in Eq.(1).

B Graph Spectral Theory and Graphon Convolution

In this section, we will introduce some preliminary for graph spectral theory and demonstrate the
deduction for graphon convolution with more details. The basic concept of graphon can be found in
various mathematics or signal processing references [36, 35, 31].

B.1 Graph Spectral Theory

We begin with the graph spectral theory for discrete graphs. For a discrete graph G = (V, E), the
graph Fourier transform (GFT) is defined as

x̂ = U⊤x (25)

where S = UΛU⊤ is the eigenvalue decomposition of the graph shift operator S. A graph shift
operator is a diagonalizable matrix S ∈ RN×N satisfying Sij = 0 for i ̸= j, (i, j) ̸∈ E . The graph
Laplacian L = I −A and the normalized version L = I −D−1/2AD−1/2 as was used in GCN [21]
where A is the adjacency matrix are such operators. As clear as this definition of a GFT is, it remains
computationally prohibitive to implement the filtering operation on a large graph in this way. To filter
the graph frequencies, a polynomial approach is thus adopted on the eigenvalues:

Hx =

K∑
k=0

wkL
kx (26)

where wk are the learnable parameters. In the GCN formulation, the authors used the diagonalized
matrix Λ instead of L, which is essentially equivalent.
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We now switch to the continuous graphon setting. As defined in Eq.(10), a graphon is a symmetric
square-integrable function. The kernel W induces an operator TW defined in Eq.(2). As W is
symmetric and square-integrable, TW is a self-adjoint operator that can be decomposed as

UTW = ΛU (27)

where U is some unitary operator and Λ is a mulplication operator, i.e., there exists a function ξ(x)
such that for all f(x), Λf(x) = ξ(x)f(x). This directly follows the result of the spectral theorem
for self-adjoint operators. In this way, we may similarly define the graphon Fourier transform as

f̂ = Uf (28)

Following the polynomial approach of approximating the graphon filter, we first define the power
series of TW as in Eq.(11) and use the Chebyshev polynomials of TW to approximate the graphon
filter H as Hf ≈ θ1f + θ2TW f . Either way, parameterization and evaluation of TW f is required.
As mentioned in Sec.4, our model essentially operates on the eigenvalues of the operator TW . In the
graph spectral point of view, the eigenvalues are the spectrum of the operator. Therefore, any spectral
filtering can be effectively viewed as graphon convolution. More details regarding parameterization
will be discussed below.

B.2 Approximating Graphon Convolution

We now consider parameterization and evaluation of TW to deduce Eq.3. For any complete orthonor-
mal basis {ψk}∞k=1 of L2(D), any square-integrable function f can be expanded as f =

∑∞
k=1 fkψk

where fk =
∫
D f(x)ψk(x)dx. We can then arrange the transform g = TW f as the following

matrix-vector form g = Wf , where

Wij =

∫
D
ψi(x)

∫
D
W (x,y)ψj(y)dxdy (29)

If {ψk}∞k=1 coincide with the eigenfunctions {ϕk}∞k=1 which satisfy

TWϕk = λkϕk (30)

We have Wij = λj
∫
D ϕi(x)ϕj(x)dx. For the unicentric setting, Wij is non-zero only when i = j

(the self-interaction term). For the multicentric setting, however, the computation is different. Recall
that in the multicentric setting, we assume the global feature function is the summation of all
atom-centered functions

ρ̂(x) =
∑
u∈V

∞∑
i=1

fi,uψi(x− ru) (31)

where ru is the coordinate of center u. Similarly, considering one center at the origin with the other
at r, we have

Wij =

∫
D
ϕi(x)TWϕj(x− r)dx = λj

∫
D
ϕi(x)ϕj(x− r)dx (32)

The “overlap integral” Sij(r) arises here and we further parameterize the integral with wij as the
basis transformation also involves index i. Therefore, using the above matrix-vector formulation, we
have the following parameterization:

fi ←
∞∑
j=1

wijSij(r)fj (33)

If we also assume the locality of the interaction between two expansion centers, we can sum over
all neighboring nodes to give the result in Eq.(3). The locality assumption often holds as the basis
functions decay exponentially. Therefore, ideally, the overlap integral between two far-away centers
should be negligible.
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B.3 Graphon Convolution and Continuous MPNN

Previous work regarding continuous message-passing neural networks is available. We briefly review
them here and discuss their relation to our proposed method of graphon convolution. The idea
of generalizing the discrete message-passing paradigm to continuous cases is essentially the same
procedure as we have described in Sec.3.1 and all previous work used Eq.(2) to formulate the
continuous message passing. For example, [42] proposed WNN (W refers to the graphon kernel W )
as the limiting object GNNs with an increasing number of nodes and explored the transferability of
this continuous formulation. [34] proposed cMPNN that explicitly modeled continuous functions and
provided theoretical guarantees of the convergence and generalization error under discretization. [54]
proposed MNN for modeling mappings between continuous manifolds and also leveraged the graph
limit view of large graphs.

Though sharing a similar idea of utilizing continuous geometric structures, our method is funda-
mentally different from the above models. Most significantly, in the above work, the authors either
explicitly constructed the graphon kernel W (WNN, MNN) or directly estimated the Fredholm
integral (cMPNN) in a similar fashion as various neural operators. Our approach, on the other hand,
implicitly constructed the graphon and parameterized them in the spectral domain. We noted in
Sec.3.1 that the kernel W does not have a canonical form in our setting and Monte Carlo estimation is
prohibitive for large voxels. Instead, we defined a basis set and demonstrated in previous subsections
that transformation on the coefficients can be also viewed as graphon convolution in the spatial
domain. In this way, we implicitly assume that there exists a different graphon for each data sample
defined by their discrete structure and their categorical information. Nonetheless, the parameterization
of graphon was done with the same graphon convolution for the whole dataset, as we expected this
information to be generalizable across different samples. In the abovementioned work, however, a
different net needs to be trained for a different graphon.

In terms of the problem formulation, we further assume there exists an underlying discrete structure
that has a significant physical connotation, e.g., atoms in electron density. The datasets on electron
density we experimented with are real-world data and are significantly larger than those used in
previous graphon-related work. Based on the above difference in data structure and tasks, we designed
a new network architecture that is different from the work before. We approximated the graphon
convolution with neural nets on the coefficients instead of the feature functions themselves, and we
also proposed the residual operator layer to mitigate the finite approximation error. Also, we extended
the definition of rotation equivariance to continuous functions and provided rigid proof that our model
achieves such a desirable property by design.

In conclusion, our work should be viewed as parallel to the existing work on graphons. We are
also aware of the values of previous theoretical work. As our model still followed the framework
on estimating and parameterizing the integral in Eq.2, the theoretical results on convergence and
transferability could be adapted for our model to make it more concrete and solid.

C Datasets

In this section, we provide more details about the datasets we used in the experiments.

QM9. The densities are calculated with VASP using the Perdew–Burke-Ernzerhof (PBE) functional
[17, 18]. The grid coordinates are guaranteed to be orthogonal but are generally different for different
molecules.

Cubic. The densities are calculated with VASP using the projector augmented wave (PAW) method
[53]. As the crystal structure satisfies the periodic boundary condition (pbc), the volumetric data are
given for a primitive cell with translation periodicity. We only focus on the total charge density and
ignore the spin density. Note that though all materials belong to the cubic crystal system, some of the
face-center cubic (fcc) structures are given in its non-orthogonal primitive rhombohedral cell.

MD. Densities from [1] are calculated with the PBE XC functional; densities from [2] are calculated
with Quantum ESPRESSO using the PBE functional. Both datasets are simulated in a cubic box with
a length of 20 Bohr and a uniform grid size of 503. The result volumetric density is represented in
Fourier basis, so we first converted it into the Cartesian form for all models.
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The raw data of these datasets come in different formats. We defined a unified data interface to
facilitate experiments and easy extension to other datasets. A data point consists of the following
data fields for training and inference:

• atom_type: Atom types of size N .

• atom_coord: Atom coordinates of size (N, 3).

• density: Voxelized density value of size Nx ×Ny ×Nz . Note that it was flattened to have
the order of X-Y-Z.

• grid_coord: Coordinates of the grid points where densities are sampled, with size (Nx ×
Ny ×Nz, 3).

• shape: A 3D vector representing the discretization sizes of each of the three dimensions.

• cell: A 3-by-3 matrix representing the cell vectors.

Other common statistics of the datasets are summarized in Table 3. The MD dataset does not have
a validation split. The number of grids and grid lengths is for a single dimension so the number of
voxels scales cubically with respect to it.

Table 3: Dataset details.

Dataset QM9 Cubic MD
train/val/test split 123835/50/10000 14421/1000/1000 1000(2000)/500(400)
max/min/mean #grid 160/40/87.86 448/32/93.97 20/20/20
max/min/mean #node 29/3/17.98 64/1/10.49 14/8/10.83
max/min/mean length (Bohr) 15.83/4.00/8.65 26.20/1.78/5.82 20.00/20.00/20.00
#node type 5 84 3

D Model and Training Specification

In this section, we provide our model specifications as well as the baseline model specifications.
Training- and testing-related hyperparameters used in the experiments are also provided.

D.1 Model Specification

We provide more details about the proposed InfGCN model and the baseline models. The baseline
models’ architectures are briefly described and major hyperparameters are provided. The model sizes
provided here are for QM9.

InfGCN. We used spherical degree ℓ ≤ 7 and the number of radial bases n = 16 with the Gaussian
parameters ak starting at 0.5 Bohr and ending at 5.0 Bohr. The distance was first embedded in a
64-dimensional vector and went through two fully-connected layers with a hidden size of 128. We
used 3 InfGCN layers. This model has 1.20M trainable parameters and was used for all datasets.

CNN [40, 4]. We used a 3D-CNN with the U-Net architecture which has been successful in
biomedical imaging tasks. CNN is generally not rotation equivariant. As the density grids in the
datasets are not necessarily the same, we manually injected the grid information by pre-computing
the initial feature map on the grid points as:

fk(x) =
∑
u∈V

exp

(
−ak
|x− xu|2

ru

)
(34)

where ru is the covalent radius of atom u and {ak} are pre-defined Gaussian parameters that contribute
to the feature channel. The initial feature map was built with 16 Gaussian parameters ak starting at
0.5 Bohr and ending at 5.0 Bohr. We used a 3-level U-Net with 32, 64, and 128 feature channels,
respectively. The resultant model has 990k trainable parameters.

The following 5 baselines are interpolation nets, as they take query coordinates and try to interpolate
them from the node (atom) information.
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DeepDFT [17] and DeepDFT2[18]. DeepDFT is a GNN-based network that models the interaction
between the atom vertices and the query vertices for which the charge density is predicted. As
DeepDFT only takes the invariant features of atom types and edge distance as input, it is also globally
equivariant. DeepDFT2 uses PaiNN [45] as the GNN architecture. PaiNN designs equivariant
interaction between scalar and vectorial features. Therefore, DeepDFT2 is locally equivariant. We
simply followed the original model architectures which gave models of 2.04M and 2.93M trainable
parameters, respectively.

EGNN [43]. EGNN defines an equivariant message passing based on invariant edge features like
distance embedding. We used 4 layers of EGNN with an input dimension of 128 and hidden and
output dimension of 256, resulting in a larger model than the original EGNN paper. We also added a
query-specific residual GNN similar to InfGCN. The model has 2.27M trainable parameters.

DimeNet [23] and DimeNet++ [11]. DimeNet uses spherical 2D Fourier-Bessel basis functions (2D
analogs to spherical harmonics) to embed bond angles, hoping to capture geometric information
about the interaction between atoms. They have achieved SOTA performance on physical property
prediction. We slightly modified the original models to output a 128-dimensional feature for each atom
and added a query-specific residual GNN similar to InfGCN. All the other model hyperparameters
are the same as the original models. As a result, the two models have 2.31M and 2.02M parameters,
respectively.

The following 3 baselines are neural operators. They directly try to parameterize the Fredholm
operator in Eq.(2) using various approaches. Same as CNN, they cannot automatically capture the
grid information, so we also use the feature in Eq.(34) as the initial feature. The initial feature map
for these models is built with 32 Gaussian parameters ak starting at 0.5 Bohr and ending at 5.0 Bohr.
For all NOs, a sampling training and inference scheme is utilized. We will discuss it in detail in the
next subsection.

GNO [28]. The Graph Neural Operator (referred to as Graph Kernel Network or GKN in the original
paper) tries to parameterize the Fredholm operator in Eq.(2) with the message passing on Monte
Carlo sampled random subgraphs:

f(x)← σ

Wf(x) +
1

|N (u)|
∑
N (u)

F(x,y, f(x), f(y))f(y)

 (35)

where F is a neural net. Note that GKN is neither translation equivariant nor rotation equivariant. We
used a feature size of 384 and stacked 4 convolutional layers. The cut-off distance was 5.0 Bohr for
all datasets. The resultant model has 1.84M trainable parameters.

FNO [29]. The Fourier Neural Operator does the parameterization in the Fourier domain:

f(x)← σ
(
Wf(x) + F−1R(Ff)(x)

)
(36)

where F ,F−1 are the Fourier transform and inverse Fourier transform over the sampled data points,
and W,R are learnable parameter matrices. For the parameterization in the Fourier domain, only a
fixed number of low-frequency Fourier modes are kept for efficiency. We used a feature size of 128
with a number of Fourier modes of 128 and stacked 4 layers. The cut-off distance was 5.0 Bohr for
all datasets. The resultant model has 33.63M trainable parameters.

LNO [32]. The Linear Neural Operator is based on the low-rank decomposition of the kernel
W (x,y) :=

∑r
j=1 ϕj(x)ψj(y), similar to the unstacked DeepONet proposed in [32]. We used a

feature size of 384 with a rank of 64 and stacked 4 layers. The cut-off distance was 5.0 Bohr for all
datasets. The resultant model has 803k trainable parameters.

To facilitate model training and evaluation, we also defined a unified model interface such that
each model takes the atom types, atom coordinates as defined above, and the sampled densities and
sampled grid coordinates which we will cover below. The model outputs predicted density values at
each sampled grid point.

D.2 Training Specification

We followed [17] to use a sampling training scheme, and we also adapted it for every model except
for 3D-CNN. During training and validation, only a small portion of the grid is randomly sampled
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with the corresponding density values. This scheme drastically reduces the required GPU memory, as
there were cases when the whole voxel could not fit into a single GPU. During inference, however,
all voxels were partitioned into mini-batches for a full evaluation to avoid randomness for a more
convincing result. The 3D-CNN model required the whole voxel information, so the sampling scheme
was not used.

As was demonstrated in [28], this sampling scheme can be best understood as Nyström approximation
of the integral in Eq.(2). The original FNO and LNO models used the whole grid points for the
estimation of the integral (Monte Carlo approximation). This is one of the major reasons that these
models cannot scale to 3D voxel data. In our experiment, FNO and LNO would cause OOM even for
the QM9 dataset with a batch size of 1.

The training and testing specifications are provided in Table 4. The cut-off in Bohr refers to the cut-off
distance for building the atom-atom graph and the atom-query graph for InfGCN and interpolation
nets. All training was done on a single NVIDIA A100 GPU. For efficiency, the testing for QM9 was
done on the last 1600 samples, so larger molecules were tested. For Cubic and MD, testing was done
on all the test samples.

Table 4: Training specifications.
Model Dataset cutoff n_iter lr patience batch_size lr_decay train_sample inf_sample

InfGCN
QM9 3.0 40k 1e-3 10 64

0.5 1024 4096Cubic 5.0 10k 5e-3 5 32
MD 3.0 2k 5e-3 5 64

CNN QM9 NA 100k 3e-4 10 4 0.5 NA NAMD 4k 1e-3 5 32

DeepDFT/
DeepDFT2

QM9 3.0 40k 3e-4 10 64
0.5 1024 4096Cubic 5.0 10k 3e-4 10 32

MD 3.0 2k 1e-3 5 64

EGNN/
DimeNet/
DimeNet++

QM9 5.0 40k 3e-4 10
64 0.5 1024 4096Cubic 5.0 10k 3e-4 10

MD 3.0 2k 1e-3 5

GNO/
FNO/
LNO

QM9
NA

80k 3e-4 10
32 0.5 1024 4096Cubic 10k 3e-4 10

MD 2k 1e-3 5

D.3 Complexity Analysis

The naïve implementation of a message-passing layer with padding and masking scales toO(|E|C(ℓ+
1)6) where |E| is the number of edges and C is the number of channels. This is because the message
passing step involves a tensor product of two spherical tensors and the Clebsch-Gordan coefficients
have their six indices all summed. However, note that there are only (ℓ+ 1)2 spherical harmonics
with the degree up to ℓ. If coefficients are compressed into one long vector, the complexity can be
reduced to O(|E|C(ℓ + 1)4). During the expansion of the basis functions on the voxels, the time
complexity is O(|E|KC(ℓ+ 1)2) where K is the number of voxels sampled. In practice, we noticed
that a small ℓ suffices so that (ℓ + 1)4 can be viewed as a constant (ℓ = 7 corresponds to 4096).
Also, the Clebsch-Gordan coefficients can be pre-computed and stored, and the summation can be
efficiently done by index manipulation. Our implementation was based on the e3nn3 package which
implements efficient spherical vector manipulations.

In comparison, most GNN-based layers scale as O(|E|D2) where D is the hidden feature size. There-
fore, in our standard-setting (C = 16, ℓ = 7), the time complexity is approximately of the same order
(with D = 256). For GNO, FNO, and LNO, one layer scales as O(KD2), O(KD3), O(KD2R),
respectively. The additional coefficients are for the Fourier modes or the rank. For 3D-CNN, the
time complexity scales as O(CinCoutNxNyNzk

3) where k is the kernel size. This is significantly
larger than any of the GNN-based methods, as the whole voxel needs to be encoded and decoded. In
practice, we found the interpolation nets ran slightly quicker than InfGCN and NOs, but our proposed
InfGCN was able to achieve better performance.

3https://e3nn.org/
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E Additional Results

In this section, we provide more visualization results on the QM9 and Cubic datasets to further study
the generalizability of InfGCN. For the Cubic dataset, we further provide a sample on the cubic
primitive cell in Figure 6.

Figure 6: Visualization of the predicted density, the density error, and the NMAE for Rb8AsO3
(mp-1103058 in Cubic).

For the density visualization, we used linearly spaced values from 0.05 to 3.5 with 5 isosurfaces for
the ground truth density and -0.03 (deep pink), -0.01, 0.01, and 0.03 (deep green) for the density
errors for QM9 in Figure 2. We used values of 0.3, 1, 3, and 8 for the ground truth density and -0.3,
-0.1, 0.1, and 0.3 for the density errors for the rhombic primitive cell in Figure 2. We used linearly
spaced values from 0.5 to 8.0 with 5 isosurfaces for the ground truth density and -0.3, -0.1, 0.1, and
0.3 for the density errors for Cubic in Figure 6.

As QM9 covers a broad range of different types of molecules, we manually picked some representative
molecules and evaluated all the models. The results are provided in Table 5. In order to provide a
finer-grained comparison between different models, we used finer-grained isosurfaces with values of
-0.03, -0.01, 0.01, and 0.03, respectively. The corresponding NMAE (%) is also provided below the
plot. Molecule names, their corresponding file IDs, chemical structures, and ground truth densities
are also provided in the table.

The selected molecules cover a variety of chemical types, ranging from alkane, alcohol, and ester
to aromatic heterocyclic compounds. InfGCN has a significant advantage over other baselines,
demonstrating its generalizability across different molecules. We also observe some patterns of the
density estimation error:

• All models performed better on alkanes or the alkyl part of the molecules, e.g., the linear
nonane, the branched t-butyl group, and the cyclic cyclohexane. One exception is cubane,
which adopts an unusually sharp 90° bonding angle that would be highly strained as
compared to the 109.45° angle of a tetrahedral carbon. In this example, InfGCN was still
able to make a relatively accurate prediction.

• The predictions were worse for atoms with high electronegativity (F, O, N), even if the errors
are normalized by the number of electrons. From a chemical aspect, a higher density will
lead to a better “polarizing” ability to distort the electron cloud of the covalent atom, leading
to more complicated higher-order interactions between atomic orbitals 4. For example, the
carbon atom in CF4 has a significant positive partial charge, but DeepDFT overestimated its
density (in pink). Noticeably, InfGCN can estimate the oxygen density with great accuracy,
e.g., in glycerol, di-t-butyl ether, and isoamyl acetate.

• The predictions were even worse for a conjugated and aromatic system where electrons
are highly delocalized5. Delocalization of electrons allows for long-distance interactions
which are harder to capture. The presence of electron-donating groups (EDGs) and electron-
withdrawing groups (EWGs) contributes greatly to the conjugated system. For example,

4The electron cloud actually won’t undergo any polarizing or hybridization procedure, but it is still beneficial
to think of it in this way, as it provides an intuitive interpretation of the linear combination of atomic orbitals
(LCAO). In practice, such ideas are still widely used in chemistry.

5The term delocalized is also not accurate for describing electron density. However, as mentioned above, it is
a convenient way of building molecular orbitals from atomic orbitals, and so are the concepts of EDG and EWG
mentioned in the following text.
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Figure 7: Resonance forms of aniline and nitrobenzene with formal charges.

the amino group – NH2 is an EDG when bonding to a conjugated system like benzene,
facilitating ortho- and para-electrophilic reactions. In contrast, the nitro group – NO2 is an
EWG that facilitates ortho- and para-nucleophilic reactions (See Fig.7). It can be seen from
the visualization that the ortho- and para-positions of aniline are underestimated (in green)
and those of nitrobenzene are overestimated (in pink) with DeepDFT and other models.
For cytosine and fluorouracil, the amide (lactam) tautomeric form predominates at pH 7,
further making the electron structures more complicated to achieve accurate predictions.
More examples of the conjugated systems include the nitro group itself where the density of
oxygen is overestimated and the amide group in asparagine where the density of the amide
oxygen is underestimated and that of nitrogen is overestimated.

Table 5: More results on QM9.

Name File
ID Structure Ground

Truth InfGCN CNN DeepDFT DeepDFT2 EGNN DimeNet DimeNet++ GNO FNO LNO

ammonia 2 NH3

urea 20

acetone
oxime 49

furan 52

tetrafluoro-
methane 184 CF4

glycerol 397

cyclohexane 658

Continued on next page
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Table 5: More results on QM9. (Continued)

aniline 940

cytosine 4318

cubane 19116

purine 24537

di-t-butyl
ether 57520

isoamyl
acetate 60424

asparagine 61439

nonane 114514

nitrobenzene 131915

fluorouracil 132701
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