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Abstract

Citing and describing related literature are crucial to scien-
tific writing. Many existing approaches show encouraging
performance in citation recommendation, but are unable to
accomplish the more challenging and onerous task of cita-
tion text generation. In this paper, we propose a novel dis-
entangled representation based model DisenCite to automati-
cally generate the citation text through integrating paper text
and citation graph. A key novelty of our method compared
with existing approaches is to generate context-specific ci-
tation text, empowering the generation of different types of
citations for the same paper. In particular, we first build and
make available a graph enhanced contextual citation dataset
(GCite) with 25K edges in different types characterized by ci-
tation contained sections over 4.8K research papers. Based on
this dataset, we encode each paper according to both textual
contexts and structure information in the heterogeneous cita-
tion graph. The resulted paper representations are then dis-
entangled by the mutual information regularization between
this paper and its neighbors in graph. Extensive experiments
demonstrate the superior performance of our method compar-
ing to state-of-the-art approaches. We further conduct abla-
tion and case studies to reassure that the improvement of our
method comes from generating the context-specific citation
through incorporating the citation graph.

Introduction
The massive accumulation of scientific papers promotes ad-
vances in science. However, it also leads to the growing
burdens for researchers to retrieve, review, and digest lit-
erature. Consequently, there is a pressing need to develop
data-driven tools that can automate different tasks to acceler-
ate literature reviews, such as literature summarizing (Luhn
1958; Mei and Zhai 2008; Yasunaga et al. 2019), citation
recommendation (He et al. 2010; Huang et al. 2012), and
paper representation (Beltagy, Lo, and Cohan 2019; Cohan
et al. 2020). An important but unaddressed problem in this
endeavor is to automatically generate citation text (Xing,
Fan, and Wan 2020; Luu et al. 2021). Citation text gener-
ation aims to generate a short text, typically one or two sen-
tences, to describe a cited paper in the context of the citing
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Figure 1: An illustration of different types of contextual ci-
tations for cited paper X and the constructed heterogeneous
citation graph. The bold font indicates highly related text
within each type-specific citation.

paper, making it an immediate step after citation recommen-
dation and an inevitable step before finishing the paper.

The most similar task to citation text generation is the
well-studied task of paper summarization (Hoang and Kan
2010; Hu and Wan 2014; Chen and Zhuge 2019). However,
citation text generation is more challenging than paper sum-
marization since it is required to capture not only the content
of the cited paper, but also the relationship between the cited
and citing paper. One promising approach to capture such re-
lationship is to leverage the citation graph, which enables us
to resemble citation text from other similar papers.

Nevertheless, it remains challenging to integrate the struc-
tured citation graph and the unstructured paper text. CG-
SUM (An et al. 2021) leverages citation graph to incorpo-
rate the information of both paper and its references for the
summarization model. SPECTER (Cohan et al. 2020) gen-
erates document-level embeddings of scientific papers for
downstream tasks through pretraining a Transformer lan-
guage model on citation graph. AutoCite (Wang et al. 2021)
jointly learns citation recommendation and context genera-
tion based on the paper representations which are encoded
with both citation graph structural and textual contexts. In
addition to citation graph, some approach (Tian et al. 2021)
utilizes social networks for few-shot text personalized con-
versation task and improves the generation performance.

Despite their encouraging performance, existing ap-
proaches only assume a single type citation relationship be-
tween two papers, which is over-simplified for modeling
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real-world citation text. Intuitively, citation text in differ-
ent paper sections (e.g., introduction, related work, model,
and experiment) could emphasize on the different aspects of
the relationship between two papers. We demonstrate such
examples in Figure 1, where the citation texts to the same
cited paper present different semantic meanings. Existing
approaches that encourage all citing papers, regardless of the
context they belong to, to be closely embedded in the low-
dimensional space. As a result, it could introduce bias and
further harm citation text generation. For example, simply
transferring the citation text from the model section to the
experiment section could be problematic, as the former often
discusses the technical content of the citing paper whereas
the latter mainly focuses on the experiment settings.

Presented Work. Motivated by the above observations,
we incorporate the citation graph into the citation text gen-
eration through considering the context and specific con-
tained sections of each citation. Since all current citation
graph datasets do not provide citation positions between pa-
pers, we first constructed a graph enhanced contextual ci-
tation dataset (GCite) based on papers from the Semantic
Scholar Open Research Corpus (S2ORC) (Lo et al. 2020).
Our dataset is a connected heterogeneous citation graph that
contains 25K citation relationships with different types over
4.8K papers. We divide the context of papers into four sec-
tions (namely introduction, related work, model, and exper-
iment) and extract citation context from each section. In this
way, citation relationships between papers could be catego-
rized by the citation contained sections in citing paper.

Based on our dataset, we propose a novel disentangled
representation based model DisenCite, which integrates the
document and relevant citation graph structural information
for citation text generation. The key idea of our method is to
infer the potential citation positions between the citing-cited
paper pair and generate context in corresponding positions
by leveraging disentangled factors. Specifically, we first en-
code the content of different sections from one paper to cap-
ture their specific context features. Given the node (paper)
pair, we extract a local enclosing subgraph around the pair
from the whole citation graph and then utilize the heteroge-
neous graph encoder to capture the information of subgraph
structure, in which each features of node are initialized by
the encoded section features and propagated based on the
citation type. Furthermore, since the sections of one paper is
more related to the neighbors cited within this section, we
introduce a mutual information (MI) estimation strategy for
the paper and its type-specific neighbors to disentangle the
section-general and section-specific representation of the pa-
per. And the disentangled factors represent different aspects
of the paper which can be used in combination for the down-
stream multi-task decoder.

To summarize, in this paper we make the following con-
tributions:

• Dataset Contribution: We release GCite1, a graph en-
hanced contextual citation dataset containing 25K het-
erogeneous citation relationships over 4.8K papers. To
the best of our knowledge, this is the first citation graph

1https://github.com/jamesyifan/DisenCite

dataset with different types of citation relationships.
• Conceptual: We propose to learn the disentangled paper

representations enhanced by the citation graph for contex-
tual citation generation at different positions.

• Methodological: Our model captures the characteristic
differences of representations acting in diverse roles via
graphical MI estimation. It includes the MI maximization
and minimization strategies among disentangled factors.

Related Work
Contextual Citation Generation. Neural text generation
models have been widely used in machine translation (Bah-
danau, Cho, and Bengio 2014), dialog systems (Song et al.
2018, 2020), and speech recognition (Graves, Mohamed,
and Hinton 2013). For contextual citation generation, the
task is similar to scholarly paper summarization, and some
previous works formulate the related work generation as
a special case of multi-document scientific summariza-
tion (Hoang and Kan 2010; Hu and Wan 2014; Chen and
Zhuge 2019). Nevertheless, citation text generation is differ-
ent from the related work generation based on paper sum-
marization, where the generated text is much shorter and de-
scribe the cited paper according to the context of the citing
paper. Recently, PTGEN-Cross (Xing, Fan, and Wan 2020)
pilots the task of in-line citation generation which inserts a
citing sentence into a particular context within a document.
SciGEN (Luu et al. 2021) addresses the task of explaining
relationships between two scientific documents using cita-
tion text generation. AutoCite (Wang et al. 2021) introduces
a multi-task model to infer potentially related work and gen-
erates the citation context at the same time. However, these
works fail to generate different types of citation texts accord-
ing to the contexts and positions in the paper.

Disentangled Representation Learning. Disentangled
representation learning, which aims to learn representations
that separate explanatory factors of variations behind the
data (Bengio, Courville, and Vincent 2013), has recently
gained much attention. Not only such representations are
demonstrated to be more robust, i.e., enhancing generaliza-
tion ability as well as improving robustness to adversarial
attack (Alemi et al. 2017), but also more compatible for the
downstream applications, such as images generation (Chen
et al. 2016; Higgins et al. 2017), recommendation (Ma et al.
2019b; Wang et al. 2020) and graph representation learn-
ing (Ma et al. 2019a). For text generation, some works (John
et al. 2019; Cheng et al. 2020) disentangle the latent repre-
sentation of style and content in language models for con-
ditional text generation. DDS-VAE (Bao et al. 2019) gener-
ates sentences from the disentangled syntactic and semantic
spaces. Instead of directly dividing the encoded contextual
factors, our work focuses on learning disentangled represen-
tation enhanced by the citation graph for context-specific ci-
tation text generation.

Mutual Information Estimation. MI is a fundamental
measurement of the dependence between two random vari-
ables, which has been applied to a wide range of tasks,
including generative modeling (Chen et al. 2016; Cheng

11450



et al. 2020) and the information bottleneck (Tishby, Pereira,
and Bialek 2000). As exact value of MI is hard to calcu-
late, MINE (Belghazi et al. 2018) makes the estimation of
MI on deep neural networks feasible. For graph structure
data, some works estimate MI for unsupervised or semi-
supervised learning (Velickovic et al. 2019; Peng et al. 2020;
Sun et al. 2020). VIPool (Li et al. 2020) leverages MI
maximization to obtain an optimization for vertex selection
by finding the vertices that maximally represent their local
neighborhood. Recently, some approaches (Sanchez, Ser-
rurier, and Ortner 2020; Cheng et al. 2020) perform repre-
sentation disentanglement on images/texts based on MI es-
timation. Inspired by these observations, we utilize MI esti-
mation to learn the disentangled paper representation in the
citation graph.

Problem and Novel Dataset
Problem Definition. The goal of the contextual citation
generation problem studied in this paper is to predict cita-
tion positions and generate corresponding citation text si-
multaneously. Formally, we define citation graph as a het-
erogeneous graph G = (V, E), where V consists a set of sci-
entific papers (nodes), E ⊂ V×V is a set of citation relations
(edges) between nodes in V . There is an edge type mapping
function ψ : E −→ R in citation graph, where each edge
e ∈ E belongs to one particular edge type set R : ψ(e) ∈ R
with the property that |R| > 1. Meanwhile, each node v ∈ V
consists of four sections (namely introduction, related work,
model and experiment) where the context of sections can
be represented as a sequence of words. For each node pair
(u, v) in G, our task is to predict which sections that target
paper u may cite related work v, and automatically generate
the possible citation text.

Graph Enhanced Contextual Citation Dataset. Many
scientific citation datasets have emerged in recent years. The
most commonly used citation network datasets like Cora,
Citeseer and PubMed (Sen et al. 2008), focus on paper cat-
egory classification. AAN (Radev et al. 2013) and SSN (An
et al. 2021) propose a graph-enhanced scientific summariza-
tion dataset but ignore the contextual citation relationships
between papers. PTGEN-Cross (Xing, Fan, and Wan 2020)
trains a citation text extraction model to construct a contex-
tual citation generation dataset but without considering the
graph structure and different citation relationships. In view
of the above, we construct a graph enhanced contextual ci-
tation dataset GCite, consisting of 25K relationships with
different types (7.5K introduction, 8.0K related work, 4.9K
model and 4.6K experiment citations) over 4.8K papers ex-
tracted from computer science domain of S2ORC (Lo et al.
2020). We divide the body text of papers into four sections
by the keywords, and extract citation texts within each sec-
tion. All citation positions are labeled by the corresponding
citation’s contained section type.

The Proposed Model
Overview
The basic idea of our proposed model is to encode disen-
tangled representation of documents based on the citation

graph G to help predict which sections the citation could ex-
ist and generate the corresponding citation text. As shown
in Figure 2, there are four component in DisenCite frame-
work. Given a citing-cited node pair (u, v) and the extracted
subgraph Gu,v consisting of its L hops neighbors, we encode
the context of sections within each node into latent represen-
tation and divide it into two parts. Then we utilize a graph
encoder to capture the information of the subgraph struc-
ture by aggregating neighborhood information and updating
corresponding divided factors along with citation types. To
disentangle the representation of the paper effectively, we in-
troduce a MI estimation strategy among divided factors for
each node in Gu,v . Finally, a multi-task decoder jointly pre-
dicts the citation positions and utilizes specific disentangled
factors to generate citation texts at corresponding positions.

Section Based Document Encoder
For each section of one paper, we encode its input document
to get the corresponding section states, which represent dif-
ferent aspects of the paper. We first extract and remove the
citation text from each section to prevent information leak-
age, and fliter out the related work section since most in-
put of this section are citation contexts. Then, for each in-
put document D = {x1, x2, . . . , xk} of the remaining sec-
tions, we employ a single-layer recurrent neural network
(RNN) with gated recurrent unit (GRU (Cho et al. 2014))
to convert the text to a sequence of hidden representations
H = GRU(x1, . . . , xk) and perform a linear transformation
of the final hidden state to obtain a hidden vector h ∈ Rd
as section states. Here, d denotes the dimension of section
states.

Considering document of sections can represent both fea-
tures of the contained paper and specific characteristics of
the section, we separate section states h into two parts hg ∈
R d

2 and hc ∈ R d
2 , representing general and specific states

of each section, i.e., h = [hg;hc], where [; ] denotes con-
catenation. Then, by summing over all sections we integrate
the general states of each section as the initial general states
of paper h(0)g and keep specific states of each section as pa-
per’s initial introduction, model, and experiment states, rep-
resented as h(0)i , h(0)m , and h(0)p . Notice that we concatenate
all specific states of sections as this paper’s initial related
work states h(0)r .

Heterogeneous Graph Encoder
Since the citation relationships in graph are diverse, each
aspect of paper is cooperatively characterized by its type-
specific neighbors, we aggregate features from different
types of neighbors to update this paper’s corresponding as-
pect features. Given target node t and all its one hop neigh-
bors, we group them by different citation relations to get
Nψ(e), which denotes the same type of source nodes con-
necting to t with citation type ψ(e). Inspired by the archi-
tecture of Transformer (Vaswani et al. 2017), we use L-
layers of heterogeneous graph transformer layers to update
target node’s representation. For the l-th layer, we map the
target node t into a Query vector and the source neighbors
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Figure 2: A schematic view of the DisenCite. We extract L hops neighbors from the target citing-cited paper pair as subgraph,
the color and direction of edges in the subgraph represents different citation types and citing-cited relation of the paper pair.
The MI-based disentangled encoding model are employed on the graph and we use corresponding disentangled factors of the
target pair for the citation position and context generation tasks.

s ∈ Nψ(e) under each group into a Key vector, and calculate
the attention weight αψ(e)t,s on grouped neighbors Nψ(e).

Taking introduction citation for example, we consider that
both general and introduction states are affected, and calcu-
late the attention as:

α
ψ(e)
t,s = Softmax

∀s∈Nψ(e)

( (Q(l−1)
t,ψ(e))(K

(l−1)
s,ψ(e))

T

√
d

)
,

Q
(l−1)
t,ψ(e) = [W

(l−1)
Q,g h

(l−1)
t,g ;W

(l−1)
Q,i h

(l−1)
t,i ],

K
(l−1)
s,ψ(e) = [W

(l−1)
K,g h(l−1)

s,g ;W
(l−1)
K,i h

(l−1)
s,i ],

(1)

where h
(l−1)
t,g , h

(l−1)
s,g ∈ R d

2 and h
(l−1)
t,i , h

(l−1)
s,i ∈ R d

2

are the general and introduction states of target and
source papers respectively. W (l−1)

Q,g ,W
(l−1)
K,g ∈ R d

2×
d
2 and

W
(l−1)
Q,i ,W

(l−1)
K,i ∈ R d

2×
d
2 are transformation matrices for

general and introduction states. After that, we can aggregate
the general and introduction features of paper:

z
ψ(e)
t,g =

∑
s∈Nψ(e)

α
ψ(e)
t,s (W

(l−1)
V,g h(l−1)

s,g ),

zt,i =
∑

s∈Nψ(e)

α
ψ(e)
t,s (W

(l−1)
V,i h

(l−1)
s,i ),

(2)

where W (l−1)
V,g ,W

(l−1)
V,i ∈ R d

2×
d
2 are transformation matri-

ces for the general and introduction states. Note that for
model, experiment and related work sections, we also aggre-
gate neighbor features to get zt,m, zt,p and zt,r respectively.
Moreover, through the mean pooling, we reduce the general
states zψ(e)t,g aggregated from each type-specific neighbors to
get the final aggregated general states zt,g . Then, taking in-
troduction states as an example, we apply a linear projec-
tion to the aggregated feature, followed by residual connec-
tion (He et al. 2016) as:

h
(l)
t,i = h

(l−1)
t,i +W

(l−1)
i zt,i, (3)

whereW (l−1)
i ∈ R b

2×
b
2 is the weight matrix, and l-th layer’s

output h(l)t,i can be used as input for the next layer.

Representation Disentanglement with MI
MI captures non-linear statistical dependencies between
variables. In this section, we maximize the MI of the same
aspect features between target paper and its type-specific
support neighbors to characterize each aspect while mini-
mize the MI among different aspect features of one paper to
enforce representation disentanglement.

General States Intra-MI. For general states of paper, we
assume that the extracted subgraph Gu,v shares same gen-
eral topics and encourage general states to carry information
that is presented in all nodes of subgraph (and thus are glob-
ally relevant). Following Velickovic et al. (2019), we utilize
a readout function to summarize the last layer patch repre-
sentations of the subgraph into a graph-level representation:

hGu,v = READOUT({h(L)t,g |t ∈ Vu,v}), (4)

where Vu,v are all nodes in Gu,v , READOUT can be a simple
permutation invariant function such as the mean function.
We define the general states MI estimator on global/local
pairs, maximizing the estimated MI over nodes in Vu,v:

Lgintra =
1

|Vu,v|
∑
t∈Vu,v

I(hGu,v , h
(L)
t,g ), (5)

where I(hGu,v , h
(L)
t,g ) is the MI estimator modeled by dis-

criminator Dg . We use the binary cross-entropy (BCE) loss
of the discriminator (following the formulation of Velick-
ovic et al. (2019)):

I(hGu,v , h
(L)
t,g ) = log δ(Dg(hGu,v , h

(L)
t,g ))+

EH̃,Ẽ
[
log

(
1− δ(Dg(hGu,v , h̃

(L)
t,g ))

)]
,

(6)

where (H̃, Ẽ) are the negative samples obtained by an ex-
plicit (stochastic) corruption function. Dg is a bilinear scor-
ing function.
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Specific States Intra-MI. For specific states of paper, tak-
ing introduction states as an example, introduction aspect of
target paper is the most related to neighbors cited in intro-
duction section. Thus, to keep specific characteristics of in-
troduction states, we maximize the MI between target node
and its specific surrounding neighborhoods Nψ(e) on intro-
duction states:

Liintra =
1

|Vu,v|
∑
t∈Vu,v

I(h
(0)
t,i , hNψ(e),i), (7)

where I(h(0)t,i , hNψ(e),i) is the MI estimator modeled by dis-
criminator Di, hNψ(e),i is the aggregated introduction fea-

tures of specific neighbors, namely, can be h(L)t,i . We use
the BCE loss of the discriminator as in Equation 7 and the
negative samples are obtained by the same corruption func-
tion. Similarly, we can also maximize the MI on model, ex-
periment and related work states to get Lmintra, Lpintra, and
Lrintra respectively.

States Inter-MI. For the updated general, introduction,
model and experiment states of one paper, namely H(L)

t =

{h(L)t,g , h
(L)
t,i , h

(L)
t,m, h

(L)
t,p }, mutual information minimization

among them encourages them to learn different aspect infor-
mation of the paper. Taking introduction and model states for
example, the mutual information between them is defined as
I(h

(L)
t,i , h

(L)
t,m), which reaches its minimum value zero when

h
(L)
t,i and h(L)t,m are independent to each other. As orthogonal-

ity is a special case of linear independence of vector groups,
instead of learning a discriminator between every two of
states in one paper, we introduce the constraint of orthog-
onality between states. The constraint has also been demon-
strated to be effective by many previous studies (Liang, Li,
and Madden 2020).

Linter =
1

|Vu,v|
∑
t∈Vu,v

|H(L)
t

T
H

(L)
t − I|, (8)

where | · | is the L1 norm, I is the identity matrix.

Multi-Task Decoder
To realize the citation position classification and context
generation simultaneously, we propose a multi-task decoder.
Through integrating all last layer states of citing-cited node
pair (u, v), we predict which sections the citation could exist
and generate text through combining corresponding states.

Citation Position Classification. For the predicted node
pair (u, v) in the graph, we take both two nodes as target,
integrate the last layer states of nodes and define the proba-
bility that citation may exist within each section. Take intro-
duction section as an example:

y∗i = σ(wT
i [h

(L)
g ;h

(L)
i ;h(L)m ;h(L)p ;h(L)r ] + bi), (9)

where wi ∈ R 5d
2 and bi are the learnable parameters. h(L)g ,

h
(L)
i , h(L)m , h(L)p and h(L)r are the aggregated different aspect

features of (u, v), taking h(L)i for example, the aggregated
aspect feature can be defined as:

h
(L)
i =Wi[h

(L)
u,i ;h

(L)
v,i ], (10)

where h(L)u,i , h
(L)
v,i are the updated introduction states of u and

v, Wi ∈ R d
2×d is the transformation matrix. We define our

object function for multi-label classification with BCE loss,
and can be defined as:

L1 = − 1

|4|
∑

x∈{i,m,p,r}

yx log y
∗
x+(1−yx) log(1−y∗x) (11)

Context Generation. We adopt the frequently used
GRU (Cho et al. 2014) to generate citation contexts. For the
citation within a specific section, we incorporate the general
and the specific states of (u, v) as the initial decoder hidden
states d0. Take introduction section for example:

d0 = [h(L)g ;h
(L)
i ] (12)

The hidden state dm at time m is calculated recurrently:

dm = GRU(dm−1, x⃗m), (13)

where x⃗m ∈ Rd is the word embedding generated at timem.
At each step, dm is transformed to produce the vocabulary
distribution pvocab:

pvocab = Softmax(Wddm + bd), (14)

where Wd ∈ R|vocab|×d and bd ∈ R|vocab| are weight ma-
trices, |vocab| is the vocabulary size. And the objective of
context generation for total M step is defined as:

L2 = − 1

M

∑
m

log
(
pvocab(xm)

)
, (15)

where xm is target word at each step. We jointly train the
multi-task objectives into a unified framework:

L(Θ) = L1+αL2+βLinter−γ
∑

x∈{g,i,m,p,r}

Lxintra, (16)

where Θ denotes all parameters of DisenCite. α, β, γ denote
the hyper-parameters to balance different losses.

Experiments
We validate the proposed model on our graph enhanced con-
textual citation dataset GCite. Ablation and case studies are
also provided to show the effectiveness of our model.

Experimental Settings
Dataset. The details of our GCite is provided in prelimi-
nary section, where the dataset consists of 25K citation re-
lations over 4.8K papers. We random select 80% of citation
relations to constitute the training set, and treat the remain-
ing 10%, 10% as the validation and test set respectively.
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Model Class Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Extractive
Extradst-first 0.4767 0.3569 0.2347 0.1533 0.1106 0.0051 0.0910

Extradst-random 0.3840 0.2899 0.1920 0.1254 0.1097 0.0056 0.0904
Extracite-random 0.5162 0.4002 0.2855 0.2079 0.1699 0.0314 0.1375

Seq-based
Seq2seq 0.4883 0.3522 0.2448 0.1750 0.1574 0.0404 0.1394

PTGEN-Cross 0.3139 0.2343 0.1669 0.1234 0.1641 0.0417 0.1454
SciGEN 0.4959 0.3975 0.2885 0.2110 0.1556 0.0102 0.1348

Graph-based
AutoCite 0.4696 0.3348 0.2315 0.1650 0.1700 0.0375 0.1334

GAT 0.5131 0.3818 0.2684 0.1937 0.1548 0.0382 0.1339
HGT 0.5252 0.3920 0.2758 0.1982 0.1555 0.0388 0.1359

DisenCite(Ours) 0.5418 0.4109 0.2951 0.2175 0.1756 0.0446 0.1515

Table 1: Context generation performance comparison on our graph enhanced contextual citation dataset GCite.

Model Micro-F1↑ Macro-F1↑ HL↓
FastText 0.7673 0.7310 0.3436

CNN 0.7745 0.7398 0.3331
GRU 0.7713 0.7436 0.3390

SciBert 0.7644 0.7306 0.3046
Specter 0.7785 0.7541 0.2955

GAT 0.7730 0.7415 0.3287
HGT 0.7891 0.7675 0.3040

DisenCite(Ours) 0.8004 0.7835 0.2923

Table 2: Position prediction performance comparison on our
graph enhanced contextual citation dataset GCite.

Baselines. To evaluate the performance of citation posi-
tion prediction, we compare our model with the following
three classes of models:

(A) Traditional Methods. (1) FastText (Joulin et al.
2017), (2) CNN (Kim 2014) and (3) GRU (Cho et al. 2014)
which use average word embeddings, convolutional neural
network and RNN with gated recurrent unit respectively to
encode the document.

(B) Pretraining-based Methods. (1) SciBert (Beltagy, Lo,
and Cohan 2019) and (2) Specter (Cohan et al. 2020) which
are pretrained models using document and citation informa-
tion respectively for downstream tasks.

(C) Graph-based Methods. (1) GAT (Velickovic et al.
2018) and (2) HGT (Hu et al. 2020) which are homoge-
neous and heterogeneous graph attention models. We ini-
tialize node embeddings by extracted document features.

Furthermore, to evaluate the performance of citation con-
text generation, we compare DisenCite with the following
three classes of methods:

(A) Extractive Methods. (1) Extradst-first, (2) Extradst-
random and (3) Extracite-random which extract first sen-
tence of cited paper, random sentence of cited paper, and
random citation context from other citing papers for the tar-
get cited paper respectively.

(B) Seq-based Methods. (1) Seq2seq (Bahdanau, Cho,
and Bengio 2014), (2) PTGEN-Cross (Xing, Fan, and Wan

Model Quality Consistency Section-Fit

Extradst-first 1.60 0.41 0.48
Extradst-random 1.55 0.38 0.50
Extracite-random 1.48 0.45 0.52

Seq2seq 0.80 0.30 0.38
PTGEN-Cross 0.81 0.31 0.46

SciGEN 1.38 0.69 0.67

AutoCite 0.83 0.48 0.62
GAT 1.06 0.65 0.62
HGT 1.13 0.76 0.93

DisenCite(Ours) 1.35 1.01 1.50

Table 3: Human evaluation compared with baselines. Av-
erage annotator agreement for three protocols: std=0.28,
Fleiss’ κ=0.33 (within reasonable range).

2020) and (3) SciGEN (Luu et al. 2021) which leverage
encoder-decoder framework, encoder-decoder with cross at-
tention for the contexts of citing-cited paper pair and GPT2
language model respectively to generate citation context.

(C) Graph-based Methods. (1) GAT (Velickovic et al.
2018), (2) HGT (Hu et al. 2020) and (3) AutoCite (Wang
et al. 2021) which are citation graph enhanced homoge-
neous, heterogeneous graph attention encoders, and multi-
task encoder respectively for citation generation.

Evaluation Metrics. We perform automatic evaluation
metrics for citation position classification task, both auto-
matic and human evaluation metrics for citation context gen-
eration task.

(A) Automatic Evaluation. For citation position classifi-
cation, we employ three widely used metrics for measur-
ing multi-label classification performance, including Micro
F1, Macro F1 and Hamming Loss (HL), and notice that the
smaller value of HL, the better performance of the learn-
ing algorithm. And for citation context generation, widely
use metrics BLEU-1/2/3/4 and ROUGE-1/2/L are applied to
measure the similarity between the generated context and
the ground-truth.

(B) Human Evaluation. We invite 3 well-educated gradu-
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Introduction Related Work Experiment

Truth Detecting visual relations between
objects and stuffs is an emerging re-
search problem that has drawn sig-
nificant attention recently.

It is pointed out that such relation
data would lead scene graph gen-
erators fitting to statistical counting
based on textual context instead of
understanding visual relations.

We train stacked motif networks
on vrr vg and matches the results
reported in [31] for object detec-
tor, scene graph classification and
scene graph detection.

Extracite-
random

The second approach jointly infers
the objects and their relationships
based on object proposals.

Such datasets are problematic in that
they mainly contain common re-
lations whose corresponding pred-
icates can be easily detected using
statistical counting based on the
text context.

Nevertheless, we have not seen a
notable improvement or comprehen-
sive analysis in exploiting the struc-
tured scene graph for visual qa,
despite the fact that several recent
works have started to incorporate it.

SciGEN The scene graph generation task has
been widely used in visual relation-
ship detection.

In the recent years , the most recent works heavily rely on scene graphs.

HGT Furthermore, we use of the visual
genome vg dataset to evaluate the
scene graphs in the visual genome
and the coco.

Therefore, we use the same gcn based approaches and we use the top down
vocabulary emerged.

DisenCite Detecting visual relations has
drawn significant attention re-
cently.

Scene graph, which applies gcn for
vision level scene graph genera-
tors, is a common way to parse
scene graph for language features.

In this work, we train on the relation
datasets that consists of annotated
scene graph, the images are used for
training and evaluations.

Table 4: Comparison of generated citation contexts in different sections with ground-truth.

ate students to annotate the 100 generated citation texts for
DisenCite and baselines. For each method, the annotators
are requested to grade each generated citations in terms of
three protocols: Quality, Consistency and Section Fitness.
Quality measures the appropriateness of generated citations,
and we refer 2 for fluent, 1 for few grammar mistakes and
0 for incomprehensible text. Consistency measures whether
a generated citation is consistent with the topic of citing-
cited paper pair, and we refer 2 for highly consistent, 1 for
no conflicted and 0 for contradicted. By Section Fitness we
mean: does the generated citation suitable for using in the
corresponding section, and we refer 2 for perfectly fit, 1 for
borderline and 0 for inappropriate. All annotators conduct
the double-blind annotations on shuffled samples to avoid
subjective bias.

Implementation Detail. We implement our DisenCite
model in Pytorch. The word embeddings are randomly ini-
tialized with dimension d = 50. We limit the input document
length to 600 tokens with each section (introduction, method
and experiment) less than 200 and citation context length
less than 50. For our method, we sample 2 hops of neighbor-
hoods for the target node pair as subgraph with each num-
ber of type-specific neighbors are 5 and 4 respectively. The
hyper-parameter α = 1, β = 1e−1, γ = 1e−1, and dropout
with probability p = 0.35 is employed for all parameters to
prevent overfitting. We optimize DisenCite with Adam op-
timizer by setting the initial learning rate lr = 5e − 3 and
uses early stopping with a paticnce of 20, i.e. we stop train-
ing if ROUGE-L on the validation set dose not increase for

20 successive epochs. For baseline methods, we split exactly
the same training, validation and test set as DisenCite and
apply a grid search for optimal hyper-parameters.

Experimental Result
Table 2, Table 1 and Table 3 respectively show the results
of citation position classification and context generation on
GCite, where the best results are boldfaced.

Position Prediction Result. As shown in Table 2, our
model has achieved a significant improvement over the base-
line methods and the heterogeneous graph attention model
HGT gets sub-optimal results. Compared with traditional
methods, pretraining-based models has a length limit of 512
and has not shown great advantages in the task. Meanwhile,
homogeneous graph attention model GAT considers citation
graph structure with single edge type but performs poor. It
shows that the heterogeneous citation graph helps to get a
better representation for citation position prediction.

Context Generation Result. For context generation, the
automatic evaluation results are presented in Table 1, and we
can see that our model has achieved the best performance.
Compared with seq-based methods, graph-based methods
especially HGT achieve slightly better results, which indi-
cates that heterogeneous citation graph structure is critical
for generating context. Moreover, for the same citing-cited
paper pair, we report the degree of diversity by calculating
the number of distinct n-grams (n=1) in generated citations
among different sections, namely distinct score (Li et al.
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Figure 3: Ablation study of the DisenCite, w/o means we
remove the module from the original DisenCite.
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Figure 4: Performance w.r.t different graph transformer layer
numbers.

2015). Compared with 0 (namely exactly same) of other
baselines (except extractive methods), DisenCite achieve
0.6454 which almost close to 0.7188 of ground truth.

Additionally, Table 3 shows the results of human evalua-
tion, which is almost consistent with the automatic measure-
ments. We can find that quality scores of the extractive meth-
ods are the best since these methods directly extract sen-
tences from paper. However, for consistency scores, some
seq-based and graph-based methods perform better. Com-
pared with other baselines, DisenCite achieves the best per-
formance especially on section fitness score, which demon-
strates the effectiveness of achieving disentangled represen-
tation for context-specific citation generation.

Context Generation Patterns Analysis. We calculate
BLEU-4 score of generated contexts within each section,
and find that seq-based models (seq2seq) in introduction
(0.19) and related work (0.18) perform slightly better than in
model (0.16) and experiment (0.17). We think the reason is
that citations in introduction and related work are always in
the similar format of “XX et at al. . . . ”. By integrating het-
erogeneous citation graph, DisenCite can encode not only
textual features as other baselines but also different citation
relationships of papers to get their disentangled representa-
tions for context-specific citation generation, which allevi-
ates this problem with a higher score in introduction (0.21),
related work (0.21), model (0.21) and experiment (0.22).

Ablation Study on MI Estimation. We conduct an abla-
tion study to verify the effectiveness of disentangled rep-
resentation via MI estimation. As shown in Figure 3, for
the task of citation position prediction, the performance has
slightly been affected with the removal of intra and inter MI
estimations. In contrast, MI estimation has a more signif-

icant effect on citation context generation. The best results
have been attained by considering both intra and inter MI es-
timations, which indicates that MI estimation can help to ob-
tain the disentangled paper representation for different types
of citation generation within corresponding section.

Effect of Graph Transformer Layer Number. By stack-
ing different numbers of propagation layers, we investigate
how the depth of DisenCite affects the performance. In par-
ticular, we stack the layer numbers in the range of [0, 3].
Figure 4 shows the experimental results and we can find that
when there is no states propagation between papers (num-
ber of layers equals 0), our model becomes worse, which
indicates that citation graph can greatly enhance the two
citation generation tasks. Meanwhile, when the number of
layers reaches to 1, the performance become stable, which
demonstrates that one-hop neighbors is enough for the tasks.
This is reasonable since authors always reference other cit-
ing papers (one-hop neighbors) to generate citation for the
target cited paper in real world scenario.

Case Study. To better understand the disentangled paper
representation for citation generation, we present some con-
texts generated by DisenCite. We randomly sample a source
paper to generate its citations within each sections (related
work and experiment sections are corresponding to the same
cited paper) and bold font indicates highly related text within
each section. As shown in Table 4, we can find that al-
though extractive methods can generate different contexts
for the paper, the generated texts are not suitable for the cor-
responding section. Other seq-based and graph-based meth-
ods can only generate the same citations for different sec-
tions of target paper and are not suitable for the correspond-
ing section as well. DisenCite not only correctly predict the
keywords (e.g., scene graph generators) and semantically re-
lated words (e.g., relation datasets) as the original text, but
also help to generate reasonable citation context for different
sections, especially when the same paper cited in different
sections. The generation cases also demonstrate the advan-
tage of achieving disentangled representation for context-
specific citation generation.

Conclusion
In this paper, we augment different types of citation rela-
tions and propose a disentangled paper representation based
model DisenCite for citation text generation. Specifically,
we use not only the document information of citing-cited
pairs, but also the useful document information of the corre-
sponding research community from citation graph to gener-
ate the final citation. We construct a graph enhanced contex-
tual citation dataset GCite with 4.8K papers and 25K citation
edges with different types. In addition, we design a citation
graph enhanced disentangled encoding model via MI esti-
mation strategies for the downstream citation position pre-
diction and context generation tasks. Experiments show the
effectiveness of our proposed model and the important role
of disentangled representations for citation generation. For
future work, we plan to explore heterogeneous graph struc-
ture and extend DisenCite model to general text generation
tasks, such as dialog and machine translation systems.
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